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The steady, laminar, incompressible flow over a periodic wavy surface with a 
prescribed surface-velocity distribution is found from the solution (via Newton’s 
method) of the two-dimensional Navier-Stokes equations. Validation runs have 
shown excellent agreement with known analytical (Benjamin 1959) and analytico- 
numerical (Bordner 1978) solutions for small-amplitude wavy surfaces: For steeper 
waves, significant changes are observed in the computed surface-pressure distribution 
(and consequently in the nature of the momentum flux across the interface) when 
a surface orbital velocity distribution, of the type found in water waves, is included, 

1. Introduction 
Solutions for the flow over a specified wavy surface are desirable for understanding 

the process of wave growth under the action of wind and the effect of surface 
configurations on drag. Owing to the complexity of these problems, which involve 
the time-dependent, three-dimensional, turbulent, nonlinear, coupled air-water or 
water-solid medium motion, substantial idealizations have to be made. Solutions for 
flow over small-amplitude wavy surfaces were obtained by Miles (1957 and later 
papers), and by Benjamin (1959). I n  their work, the surface was regarded as a steadily 
propagating wave of infinitesimal amplitude on a flexible boundary, which introduced 
a perturbation on the specified mean flow. Assuming steadiness in the reference frame 
moving with the wave, the corresponding Orr-Sommerfeld equation for the 
perturbation of the flow could then be solved numerically, and, for certain limits, 
analytically. 

The removal of the infinitesimal-amplitude assumption requires the solution of the 
full nonlinear Navier-Stokes equations. The present paper presents some numerical 
solutions of the two-dimensional steady-state Navier-Stokes equations for laminar 
viscous flow over a specified steady wave profile of arbitrary amplitude and shape, 
and arbitrary distribution of surface velocities. 

2. Governing equations 
We consider the two-dimensional, periodic, viscous, incompressible air flow- over 

a periodic wavy surface propagating with constant wave speed c.  In  a laboratory-fixed 
coordinate system, the flow is 

u’ = U(y)+S(x’-cct), 2” = 27(x’-ct), (1) 

t Present address: Applied Math, California Institute of Technology, Pasadena, CA 91 125. 
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and the surface is y = I(x’- 

where the origin of y is chosen a t  the mean level of the wave elevation I, and the 
dependence on x’ is periodic with wavelength h = %/k. The velocity of a fluid particle 
on the surface is defined to be 

4 3  + q ( x ’ - C t )  3 ,  (3) 

where ’j is the unit vector in the vertical direction and 3 is the unit tangent i o  the 
wave surface. The velocity q (periodic in r’) measures the tangential velocity, which 
may bc produced by wave-induced orbital motion and wind drift, or otherwise 
imposed on the boundary. This boundary condition allows different types of physical 
surfaces; for example, a rigid wavy wall (q  = 0, c = 0 ) ,  a flexible wavy wall in which 
fluid particles on the surface move up and down (q  = 0, c =+= 0), or a water wave (q  =+ 0, 
c * 0 ) .  

Relative to a coordinate system (x = 2’-ct)  moving with the steady wave, the 
stream function $(x, y)  and vorticity w satisfy 

WY - wz i- wv2w = 0, 

w+V2$ = 0, 

, u = $  = u ’ - c  2, = - $z = 1,’ 
Y 

where 

are t>he velocities in the wave-fixed frame, and 1’ is the kinematic viscosity. 
The boundary conditions at the wave surface y = Z(x) are 

C 
$ = 0, A . V $  = q -  ~ 

cos B 

where A is the normal to the interface into the air, and tan 6’ is the slope of the surface. 
Periodic boundary conditions are imposed in the horizontal direction. 

I n  an unbounded flow, we require U(y) - KY, u - U ( y ) - c ,  u - 0, as y + co, where 
K is the velocity gradient of the undisturbed flow. For the purpose of computation, 
it is necessary to work in a finite domain, y < yT, and two conditions must be imposed 
a t  this artificial boundary. Among possible choices for the upper boundary conditions, 
it is desirable to impose conditions for which the solution is insensitive to changes 
in the location of the upper boundary. Our experience indicated that specification 
of the vorticity and vorticity flux leads to spurious solutions, and a condition on the 
vertical velocity causes sensitivity to the location of the upper boundary. We have 
therefore chosen to impose conditions on the horizontal velocity and the vorticity 
flux : 

$u = K Y ~  - C, wY = constant. (7)  

The value of the vorticity flux at the top boundary is determined by the requirement 
that the pressure be periodic. The adequacy of a chosen value of yT is determined 
by requiring that the results are insensitive to increases in yT. 

Another choice for the boundary conditions would be to  use the asymptotic form 
of Benjamin’s perturbation solution to formulate a boundary condition ; however, i t  
was felt that  this correction does not justify the increase in algebraic and compu- 
tational difficulties. Numerical experience indicates that  the boundary condition (7) 
is a good approximation to the unbounded flow. 

It is desirable to perform computations on a fixed rectangular region (independent 
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FIQURE 1. Flow geometry: physical and transformed planes. 

of the shape of the wavy lower boundary). This was achieved here by the use of the 
orthogonal transformation 

Y * b,  { sinhn(T,-T) 
- = q + b o -  E-cosnt 
A 1 %  sinh ny, 

to map the physical space under consideration onto the rectangular region 
0 < 5 < 27~, 0 < 7 6 yT, where 7, = y T / h - b b ,  (see figure 1 ) .  The coefficients b, can 
be chosen to approximate any given periodic and symmetrical surface. An asymmetric 
surface can be accommodated by an appropriate modification of (8). 

Upon applying the orthogonal transformation, the equations to be solved are 

where 

Since the flow is periodic in the horizontal direction, the dependent variables may 
be expanded as a Fourier series in 6: 

W cn 

1 
@ = I : f n ( ~ )  cos nt+I: g n ( 7 )  sin n<, 

0 

We further expand bhe Jacobian of the transformation 

1 " O  
- = E hn(q)  cos nt. 
J o  
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Substituting the expansions into (9a, b) ,  and equating Fourier components, yields 
a set of coupled nonlinear ordinary differential equations. Equation (9a) becomes 

I 1 "  
f: = - -{ Chisi+hoso (constant term), 

2 0  

(cosnf; term), I 
I r m  

g i  - n2g = - - C ti( - h,+i + hlnPil)  + t, h,} (sin nf; term), d l  
with go = to = 0. A prime denotes differentiation with respect to 7. 

The pressure is given by 

p + - v . v l A  1 = J A  ( v x m - v V x o ) . d s  

P 2  

where v = (u ,  v, 0 ) ,  o = (0, 0, w ) .  Integrating along a constant-7 curve, we obtain 

The total horizontal force on the surface is given by 

F, = (p sin 8 -pvw cos 8)  ds ,  (17) 

where the integration is over one wave period. The non-dimensional pressure and 
viscous drag coefficients are defined by 

1 
- 1 p sin 8 ds  
h 

- q w  cos 8 ds  

(18) 
h c, = 3 C,= 

(&) P ( W 2  ( & ) P ( W  . 

The normalization is chosen so that C, = 1 for a flat interface. 

condition 
A further condition on the flow is that the pressure be periodic, yielding the 

f 277 

J (o+~+  vw,) df; = 0 on 7 = constant. (19) 
0 
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Evaluating this integral a t  q = qT leads to an equation for the value of the constant 
vorticity flux. The complete set of boundary conditions becomes 

I 
f;(0) = nth Fourier component of (q-"-) J-4, I 
g n ( 0 )  cos 8 

= nth Fourier component of ( K Z J ~ - C ) - ,  
dy dy i 

This completes the specification of the problem. 

introduced to resolve boundary layers. The stretching [ (q)  defined by 
I n  the numerical computations, an explicit stretching in the vertical direction is 

with values of b ranging from 1 to 10, was found to provide adequate resolution. 

3. Method of solution 
The set of equations (13) and (14)  is discretized on a uniform mesh on 0 < 5 < 1 

using centred differences for the derivatives. The expansion (11)  is truncated a t  N 
Fourier modes, that  is, we take f,, g,, s,, t, to be zero for n > N in the equations. 
As primary unknowns, we take the values of {s,, t,} a t  5 = 0, A, 2A, . . . , 1 -A  
(A = ( M +  l)-l).  From (14)  at 6 = 0, A, . . . , 1 -A,  we can solve for {f,, g,}  at 6 = A, 
2A, . . . , 1 in terms of the primary unknowns. Equation (14) a t  6 = 1 gives {s ,  ( l ) ,  
t, (1 ) )  as functions of the primary unknowns. Using these relations, (13)  at 5 = A, 
2A, . . . , 1 gives (2N+ 1 )  ( M +  1 )  equations for the (2N+ 1 )  ( M +  1 )  unknowns is,, 
t,} a t  5 = 0, A, . . . , 1 -A.  This nonlinear system is solved by Newton's method. 

Several tests are imposed to determine whether the mesh spacing and Fourier 
truncation is adequate to resolve details of the flow. At the top boundary, 6 = 1, the 
pressure is constrained to be periodic, and thus must be periodic for all values of 6. 
Evaluating (19) at  5 = 0 is one indication of the resolution of the finite mesh. For 
the data presented here, the pressure difference between 6 = 0 and 6 = 277 was less 
than 1 % of the peak-to-peak pressure. To test overall momentum conservation for 
the numerical solution, the horizontal force plus the horizontal component of the 
momentum flux a t  the upper surface can be compared with the drag a t  the surface. 
Numerical solutions were rejected if the discrepancy was greater than 2 yo. 

Some of the results presented here had been previously calculated (Caponi 1979) 
using a successive-iteration approach. I n  that case, the steady state was obtained as 
the asymptotic temporal limit of the parabolic equations that model the parabolic- 
elliptic set of real time-dependent equations for the stream function and v0rticity.t 
It is well known that for such an approach the solution process can become quite 
lengthy, being very sensitive to the treatment of the lower boundary condition on 
the vorticity. Although selected runs on small-size meshes demonstrated that the 

t Time stepping was done with a modified AD1 algorithm 
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method converged to a solution of the steady-finite-difference equations, computa- 
tional economics dictated the need to establish ‘convergence criteria’ to allow for the 
acceptance of still evolving fields as the converged steady solution. The results so 
obtained compared well with solutions for special cases found by independent 
methods, and served to validate the criteria used for determining convergence. 
However, the overall efficiency of the pseudo-time-dependent method was not 
satisfactory. 

Part  of the poor convergence properties of that approach can be attributed to using 
successive iterations for the stream function @ and the vorticity w with the cycle 
closed by manufacturing a value for the vorticity a t  the lower boundary from the 
no-slip condition for the stream function. This is a consequence of the fact that the 
physical boundary conditions overspecify @ and underspecify w .  Such a situation does 
not arise when on& solves simultaneously for @ and w ,  as is the case of the present 
approach. When using Newton’s method, convergence is quadratic, and running 
times in this ease are substantially accounted for by the time spent in matrix 
inversion. A further characteristic of using Newton’s method for a steady solution 
is that  convergence is independent of the hydrodynamic stability of the flow. 
Although the Jacobian matrix has substantial zero structure, for ease of computation 
we treated the matrix as full, with resulting penalties in running times and storage 
requirements. 

4. Results 
The properties of the flow field depend on a number of parameters. For a wave 

of given form (e.g. a sinusoid or Stokes wave), the surface is specified by its 
wavelength A ,  peak-to-trough height h,  and speed c. I n  addition, the flow field depends 
on the imposed shear K ,  the kinematic viscosity v ,  and a distribution of surface 
tangential velocity q.  It is convenient to introduce three dimensionless parameters : 
the Reynolds number R = U,,A/v, where U,, = KA is the undisturbed flow speed a t  
y = A ;  the wave slope h/A;  and a ‘wave age’ c/U,. 

For c/{J,, > 0, there is a critical layer a t  a height yc = hc/U,,, where the undisturbed 
flow speed is equal to the speed of the wave, and there are regions of closed streamlines 
in a wave-fixed coordinate system (cat’s-eyes). At large Reynolds number, there is 
an internal boundary layer about yc, called the friction layer, whose thickness is given 
by 6, = AR-i when the amplitude of the motion is not too large (Benney & Bergeron 
1968). The computational domain must be large enough to  contain the friction layer, 
and experience indicated that choosing yT to be some multiple of S, (10-20 typically) 
was sufficient to approximate the unbounded flow for our range of R and yc. 

A rigid wavy surface corresponds to q = 0 and c = 0. Non-zero values of c with q = 0 
corresponds to a flexible boundary along which a wave is propagating while the 
particles on the surface move up and down. A water wave is a flexible boundary with 
non-zero q composed of wave-induced orbital velocity and possibly a wind drift. In  
the absence of wind drift, and assuming irrotational flow, the wave-induced tangential 
velocity can be obtained from the Bernoulli condition for the Stokes wave: 

where Z(x) is the elevation of the wave surface, c is the phase speed of the wave 
( (gA/2n):  for an infinitesimal wave), and g is the acceleration due to gravity. 

Solutions for small values of h/h  and q = 0 were generated for various values of 
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c for the purpose of comparing with Benjamin's (1959) linear analysis. His asymptotic 
linear theory result for large Reynolds number is 

where 
01 = (K) 47r' 4 , 20 = (27.44 (g), 
A,  - D i [ l + a ( 2 D , - . ~ ~ ) ] ,  

A ,  = (D,-z,) ( 1  +aD,)-aD?, 

D, and Di are the real and imaginary parts of the Tietjens function evaluated at. - xo .  
The linearization requires 

(24) 
-4- 'F 

y c  

if yC/6 ,  % 1 (Benney & Bergeron 1968), or 

if y,/6, < O(1) (Bordner 1978) (see appendix). Figure 2 presents plots of p versus x 
on the surface for yJ6, = 10, h/h = 0.001, with ( a )  yc h/6; = 0.22 (R = lo4) and (b)  
yc h/S; = 1.0 (R = lo6). In  figure 3, results are shown for yC/6, = 0, R = lo6, and ( a )  
h/h = (b)  lop2, ( c )  2 x lo-', corresponding to (h/dF)' = 001, 1.0,4. These results 
serve to validate the numerical procedures (figures 2a,  3 a )  and show clearly that the 
failure of the linear theory when (24)  or (25)  is violated (figures 2 b ,  3b,  3c) .  

The pressure-drag coefficient, defined by (18), depends on both the amplitude and 
phase of the surface-pressure distribution. The phase will be defined as 0 = 27rx,/h, 
where x, is the location where the pressure is at a maximum. Note that the crest 
of the wave is always taken to be x = 0. For the linear theory, the pressure-drag 
coefficient is quadratic in h/h owing to the linear dependence of pressure amplitude 
and wave slope on hlh. The dependence on R and c /U,  is more subtle, and enters 
through both the amplitude and the phase, with the major effect being through the 
phase. For instance, the result that C, < 0 for c / U ,  < 0 or c /U,  > 0 and large is a 
consequence of the phase shifting owing to changes in c/U,. 

We now investigate the effects of wave nonlinearity. The surface in all calculations 
is taken to be that o f a  Stokes wave of height h. The tangential velocity is either zero 
or that  corresponding to the Stokes wave, with or without an additional wind-drift 
contribution. 

We first plot in figures 4 and 5 the ratio of the pressure to viscous drag versus wave 
steepness for two values of Reynolds number (4 x lo4 and lo2), and four values of 
c / U ,  ( -  1-46 x lop2, 292  x lW3, 1.46 x and 5.85 x low2) with and without orbital 
velocity, and without wind drift. 

The departure from linear theory with increasing wave amplitude is a result of three 
effects: (i) departure from the linear growth of the peak-to-peak pressure; (ii) 
variation in the phase of the pressure distribution; and (iii) contributions from higher 
harmonics of the pressure distribution. For the parameter range of our computations, 
the last effect on the pressure drag coefficient is found by direct computation to be 
negligible. 
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FIQURE 2. Wall-pressure distribution; y J 6 ,  = 10.0, h / h  = 0,001 : -, linear theory; 0, numerical 
solution. (a) hy,/(S,)2 = 0215; ( b )  1.0. 

For the case of the larger Reynolds number (R = 4 x lo4, figure 4), it  is found from 
detailed examination of the results that  the amplitude of the pressure increases 
slower than linear as the wave steepness increases. This effect is more pronounced 
for the adverse-wind case (figure 4a), and the smallest-positive-wind case (figure 4b) ; 
in these cases the pressure amplitude for h /A  = 0.05, say, is about one-half that of 
the linear theory. For the higher-wave-speeds cases (figures 4c, d )  i t  is approximately 
90 yo. I n  all these cases, the effect of the orbital velocity on the pressure amplitude 
is small. The effect of finite amplitude on the phase distribution is found to move 
the phase towards zero, i.e. to lock the pressure distribution and surface elevation 
in phase. If the phase is initially more than 90’ away from the crest, this generally 
leads to  an enhancement in the pressure coefficient, as the increase in the phase 
contribution when the phase is in the vicinity of 9O”/b more than balances the 
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FWIJRE 4. For caption see facing page. 
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FIGURE 4. Ratio of pressure- to viscous-drag coefficients, showing finite-amplitude effect; 
R = 4 x 104: -, linear theory (equation (25)); A, numerical solution with orbital velocity; 0, 
without orbital velocity. (a )  c / U A  = -0015; ( b )  0003; (c) 0.015; ( d )  0.058. 

reduction of the amplitude of the pressure from the linear value. This is the 
explanation of the results shown in figures 4 (a ,  b ) .  When the phase is initially less than 
90% away from the crest, the nonlinearity-induced shift of the phase causes a 
reduction in the absolute magnitude of the drag coefficient as seen in figures 4 (c ,  d ) .  
Also, the orbital velocity is found to  have only a minute effect on the phase. 

For the case of the lower Reynolds number (R = loo), the situation is completely 
different. In  almost every case, it is found that the phase is practically independent 
of the wave height, with or without orbital velocity. All the departures from the 
predictions of the linear theory result from dependence of the pressure amplitude on 
the wave height. In contrast to the high-Reynolds-number case, the pressure 
amplitude increases with hlh at  a rate greater than linear, with the exception of the 
fastest-wave case (figure 5 d ) ,  in which the orbital velocity is found to reduce the 
amplitude compared with linear. 

The results summarized in these two sets of figures clearly indicate that there is 
a subtle and intricate interplay between finite amplitude and viscous effects. It is not 
clear to us at present how these results can be predicted and understood by simple 
models and arguments, and this is an area that warrants substantial further research. 

5. Modelling the effects of a wind drift 
It is well known that the action of wind on water is not only to generate waves 

but also to induce a surface drift current. The structure of this wind-drift current 
has been found to be extremely difficult to determine, even by careful and precise 
measurements (Wu 1975), and lias not been studied theoretically in a systematic 
fashion. Banner & Phillips (1974) proposed a model based on the idealized assumption 
that the flow is steady and the motion is inviscid outside a thin drift layer. This leads 
to a tangential velocity given by 

where c is the phase speed of an inviscid, irrotational water wave (Stokes wave), and 
qao is the drift current at the mean elevation (Z(x) = O)$. There is a stagnation point 

t Use of this condition was suggested by a referee. 

w + g w  = +(c-qdo)2, (26) 
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FIGURE 5 .  For caption see facing page. 
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FIGURE 5. Ratio of pressure to viscous drag as in figure 4 ;  R = 100. 
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FIGURE 6. Effect of drift velocity on the ratio of pressure to viscous drag; R = 4 x lo4; h/h  = 0.05: 
0, c / U A  = -0.015; 0,  0003; A, 0015; 0, 0.058; -, simple additive drift ( 2 7 ) ;  ----, 
expression (26). 

a t  the crest when qdo = c- (2gZmax)4, but the surface-velocity distribution (26) does 
not allow separated flow. To investigate the effects of separation, we assumed that 
the surface-velocity distribution to  be given by a simple additive drift 

y = ydo - (c2- 2gZ(2))5 (27 1 
For qdo > (c2-2gZ,,,)~ there is a separation bubble in the trough of the wave. 
Equation (27) is not consistent with the assumption of a steady, nearly irrotational 
flow in the water (which is itself questionable), but is relevant to the present 
investigation, which is directed towards the properties of flow over a prescribed 
surface with general velocity distributions. 

The results for R = 4 x lo4 and h/h = 0.05 with both wind-drift models are 
summarized in figure 6, where we have plotted CJC, as a function of ydo/c for the 
four values of c /  U,. The main effects are found to be analogous to a reduction in the 
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FIGURE 7 .  Streamline contours showing separation bubble; R = 4104, y,/S, = 0.058, h/h = 005, 
Qd/C = 1.0. 

wave speed c. In regimes where both models were computed, the results show only 
small differences. Separated flow occurs for the constant-drift model (equation (27)) 
when q d o / c  2 0.828, but no drastic effects in C, have been detected. An example of 
the flow field for the case c /  U, = 0-058 and qao/c = 1 is shown in figure 7 .  

6. Concluding remarks 
We have presented results for steady laminar flow of a viscous fluid over a moving 

wavy surface, obtained by numerical solution of the unapproximated Navier-Stokes 
equations, which serve to identify the effects of wave nonlinearity and the 
surface-velocity distribution. The results provide a basis for studies of instability 
mechanisms in flow over wavy surfaces and possible ways to delay or accelerate 
transition. They also constitute a concrete step towards understanding the mechanism 
of momentum transfer between wind and waves, although for this particular 
application it is understood that effects of turbulence, unsteadiness of the surface, 
and viscous effects in the water may also be important, and should be included when 
considering the full problem. However, by allowing for the existence of a drift layer 
superposed on the orbital velocity of a Stokes wave, the leading-order effect of a 
viscous water on the air flow has been accounted for. 
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Appendix 
In  this appendix we compare magnitudes of terms in the Navier-Stokes equations 

to determine the range of validity for linearization in the wave steepness. The steady 
Navier-Stokes equations are 

uu, + vu,  = -px + v(u,, + uyv) ,  (A l a )  

uv,+vv, = -py+v(v,,+liyy). (A 16) 

The uniform shear flow over a flat surface (u, v) = ( K Y -  c, 0 )  is perturbed by a periodic 
wavy deformation of the surface of amplitude h. For an incompressible fluid, small 
velocity perturbations (u’, d) can be expressed in terms of a stream function: 

Linearizing in the perturbation leads to the familiar Orr-Sommerfeld equation : 

Where U(y) = KY. For large Reynolds numbers ( v / K ~  small), the right-hand side of 
(A2) can be neglected except in the neighbourhood of the critical layer where 
U(y)-c = 0. The critical layer is characterized by large changes in 4 over a small 
distance 6,. Thus the dominant terms in (A2) are 

which leads to a balance if 6, = ( V ~ / K ) { .  

the linearization requires 
Within the critical layer, the neglected nonlinear terms have magnitude v’u&, thus 

The deformation at the wall introduces a vertical velocity perturbation of magnitude 
v’ - Qdyldx - U(h/h),  where is a characteristic horizont,al velocity a t  the wall. 
If the critical layer is away from the wall (yc/SF $ l ) ,  then 0- - G  and hence 
2.” - c(h/h).  If the critical layer is a t  the wall, (y,/S, < O ( l ) ) ,  the surface distortion 
introduces a vertical velocity of magnitude ‘u’ N ~ h ( h / h ) .  Hence neglect of the 
nonlinear terms requires : 
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